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Abstract
It is shown that the proof of the Hannay formula, given by him, is based on an
improper argument. An improved consideration is suggested.

PACS numbers: 45.40.−f, 02.40.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In [1], Hannay considers an open narrow ribbon with identical orientation at its ends. The
ribbon may be thought of as a ‘trace’ of a rigid frame freely moving in space with the unit
velocity u(s) and the angular velocity ω(s). Hannay found a new interesting relation

2πn = � +
∫

ω · u ds mod 4π (1)

between the contractibility2 number n, the solid angle � enclosed by the vector u(s), and
the twist of the ribbon T w which is the integral in (1) divided by 2π . The contractibility
number n is zero when the sequence of orientations of the frame is contractible and unity
otherwise [3].

Equation (1) follows from the Călugăreanu–White–Fuller decomposition of the linking
number [4–6]

Lk = T w + Wr (2)

and the Fuller theorem [7] that relates the writhe Wr and the solid angle �

Wr = 1 + �/2π mod 2 (3)

applied to the ribbon closed in a specific way.
The construction of the closure is a central point in the proof of the Hannay relation (1).

1 Permanent address: M V Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya
pl 4, 125047 Moscow, Russia.
2 Hannay calls this quantity the ‘turn number’, but that name may be confused with the ‘turning number’ defined for
a plane (closed) curve [2].
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2. Following Hannay

Now I reformulate the proof given by Hannay a little more formally.
Consider a non-self-intersecting curve A = r(s) : [0, L] → R

3 of class C3, s being
the arclength. Let u(s) = dr

ds
, ‖u(s)‖ = 1, and choose the unit vector v(s) ∈ C such that

u(s) · v(s) = 0,∀s ∈ [0, L]. Let ε > 0 be small enough so that the ribbon R = {r + µv,

−ε � µ � ε} does not cross itself. Also it requires that u(0) = u(L) and v(0) = v(L).
According to [1], such a ribbon may be closed by adding a new one, Q, based on the curve

ρ(σ ), σ ∈ [0, l], σ the arclength: Q = {ρ + µw,−ε � µ � ε}, where w(σ ) ∈ C is a unit
vector so that ρ′(σ ) · w(σ ) = 0,∀σ ∈ [0, l], the prime denotes the derivative with respect
to σ . The closure conditions may be written as

ρ(0) = r(L), ρ(l) = r(0) and w(0) = v(L) = v(0) = w(l).

Following Hannay, it requires that Q lie in the plane G spanned by the vectors
v(0), r(L) − r(0), i.e. ρ(σ ) ∈ G,w(σ ) ∈ G,∀σ ∈ [0, l]. Moreover, Hannay requires
that ρ′(0) = ρ′(l). Since, in general, u(0) = u(L) /∈ G, the closed ribbon R ∪ Q is based on
a curve which may be non-smooth in the points where both parts are glued together. In other
words, the tangent may jump for s = 0, L. The tangent indicatrix for such a curve consists of
two parts: (1) a closed curve corresponding to the outward curve r(s) (it confines an area �

on the surface of a unit sphere) and (2) either an arc of a great circle passed forth and back or
the entire great circle. Note that these two parts may or may not have common points.

The key point of the proof given in [1] is an application of the Fuller formula for writhe
(3) to this closed curve. In turn, the Fuller theorem is based on the Gauss–Bonnet and the
Călugăreanu–White–Fuller theorems. The application of both of them to the case under
consideration allows us to obtain the expression for the writhe

Wr = �/2π mod 1. (4)

However, Hannay’s claim is that (4) is valid modulo 2. It is easy to see that (4) does not
hold modulo 2 in a general case. Let us take just an example. Consider an outward curve r(s)

that is already closed, i.e. let r(0) = r(L) (in addition to u(0) = u(L)). Then there is no
need to build the closing ribbon at all. The Fuller formula may be applied to r(s) only and it
yields

Wr = 1 + �/2π mod 2 (5)

which is in accordance with (4), but contradicts Hannay’s claim: Wr = �/2π mod 2.
Figure 1 presents another example when the Fuller theorem in Hannay’s interpretation,

having been applied to a non-smooth ribbon, leads to a wrong conclusion. The outward
section R is based on the plane curve y = y0 = const, z = sin x, x ∈ [0, 2π],v = const and
is directed along the y-axis. The flat return section Q is built as described in [1]. It is generated
by the plane curve y = y0 + sin2 x

2 , z = 0, x ∈ [0, 2π],w lies in the xy-plane. Both parts are
not twisted and the linking number of the closed ribbon R ∪ Q is Lk = 1 (it can be readily
computed using the projection shown in the figure). Equation (2) suggests that WrR∪Q = 1.
However, the tangent indicatrix consists of two great circle arcs which means that the area
enclosed is zero. Hence, WrR∪Q �= �/2π mod 2.

According to [8], (3) is valid for a curve for which a continuous deformation (with
continuous tangents) to a circle exists. The continuity of tangents leads to the continuity of
area. Thus, the last is sufficient in order that the Fuller theorem (3) might be applied. For the
ribbon R ∪ Q in figure 1, this is actually the case, as can be seen from figure 2, where R is
deformed in such a way that the tangent becomes continuous. (The new band fragment is based
on the curve which is a union of three parts: (1) x = −π sin 9

4 t, z = 1 − cos 9
4 t, t ∈ [

0, 2
3π

)
;
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Figure 1. An example to show that Hannay’s interpretation of the Fuller formula (3) does not
work for a non-smooth ribbon.
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Figure 2. The outward ribbon R′ is modified to make the tangent continuous.

(2) x = π, z = 3
(
1 − t

π

)
, t ∈ [

2
3π, 4

3π
)
; (3) x = 2π + π cos 9

4 t, z = sin 9
4 t − 1, t ∈ [

4
3π, 2π

]
;

y = y0. Of course, it is easy to modify the curve locally to make it of class C3.) Neither
the total area changes by the deformation R → R′, nor the writhe and now it is evident that
the basic curve in figure 2 may be smoothly deformed to a circle. Since the total area swept
out by the tangent indicatrix, is zero, the Fuller theorem implies 1 + Wr = 0 mod 2 which is
consistent with Wr = 1.

An additional point to emphasize is that, contrary to Hannay’s claim, the writhe depends
on the shape of the closure. Consider a different closing ribbon Q′ of the same outward
ribbon R as in figure 1. Q′ lies in the same plane as Q does and it is generated by the
curve consisting of three fragments: (1) x = −2π sin 3

2 t, y = y0 + 1 − cos 3
2 t, t ∈ [

0, 2
3π

)
;
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Figure 3. The outward ribbon R is the same as in figure 1, but the plane closure Q′ changed.

(2) x = 3t − 2π, y = y0 + 2, t ∈ [
2
3π, 4

3π
)
; (3) x = 2π + 2π sin 3

2 t, y = y0 + 1 + cos 3
2 t,

t ∈ [
4
3π, 2π

]
; z = 0 (figure 3).

The twist of Q′ is zero by definition and it can be easily seen that the linking number of
R ∪ Q′ is zero, as well. The Călugăreanu–White–Fuller formula implies WrR∪Q′ = 0. The
area swept by the tangent indicatrix is 2π in this case and (3) is satisfied. Thus, this example
shows that the writhe depends on the shape of the closing ribbon even if the last is formed in
compliance with the limitations of [1].

Hannay also found an expression that relates the linking number of the closed ribbon to
the contractibility number of the outward section: Lk mod 2 = n, which is not generally valid
either. It will be clear from the following.

3. The proof of the Hannay formula

In this section, a corrected proof of (1) will be given.
In order to avoid the difficulties with a non-continuous tangent, a different closing ribbon

P will be constructed. It is based on an oriented curve of class C1 lying in the oriented plane
H spanned by the vectors u(0), r(L) − r(0). (If u(0), r(L) − r(0) are parallel and therefore
do not define a unique plane, the plane H = Span{u(0),v(0)} is taken.) This curve may
be always chosen having neither self-intersections nor intersections with the outward part.
Denote this curve by γ(t), t ∈ [0, λ], t being the arclength. It requires that γ(0) = r(L)

and γ(λ) = r(0) as well as γ ′(0) = u(L) and γ ′(λ) = u(0), here the prime stands for the
derivative with respect to t; thus the continuity of the tangent to the whole closed curve r ∪ γ
is provided. The closing ribbon P is based on γ and, if v(0) ∈ H , then it may be chosen lying
entirely in the same plane. Obviously its twist is zero then.

In the case when v(0) /∈ H , the ribbon P is generated by a constant vector v(0) = v(L).
Note that γ ′(t) · v(0) �= 0 in general. There are various ways to see that the twist integral of
P vanishes. The following consideration seems to be the easiest: let ν be the normal to H.
Consider another closed ribbon K based on γ and its planar closure (the closure of the closure!)
and generated by ν. It should have no self-intersections and its LkK = WrK = T wK = 0.
Now introduce a discontinuous ribbon K ′ based on the same planar closed curve as K. K ′

coincides with P for the γ part and K ′ is identical to K for the rest. K ′ may have two points
of discontinuity at γ(0) and γ(λ). In these points the angles between the generating vectors
(i.e. between v(0) and ν) are equal in value but of opposite sign (say, α and −α). K ′ can
be locally modified to make it continuous (the same way as this is done in [8], p 359). Then
the twist of K ′ is T wK ′ = α + T wP − α + 0 = 0 (because T wK ′ = LkK ′ − WrK ′ due to
(2), and LkK ′ = WrK ′ = 0). The above reasoning involves consideration of a discontinuous
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Figure 4. A different way to close the outward ribbon R′ (see figure 2) keeping the tangent
continuous.

ribbon which is related to the notion of a cord introduced by Fuller [7]. Torsionally-misaligned
ribbons are also dealt with in [9] where a result was proved which states that the sum of the
writhe and the twist of a discontinuous ribbon is equal to the linking number of the nearest
closed one plus the normalized discontinuity angle. Application of this proposition to the
non-modified ribbon K ′ leads to the same conclusion of zero twist of P.

Consider the tangent indicatrix of the closed curve r ∪ γ. Two possibilities should be
taken into account.

1. The closure γ adds a zero-area appendage to the figure confined by the indicatrix of the
outward curve r, i.e. the closure indicatrix consists of an arc of a great circle (in particular,
all the points of the great circle may belong to the indicatrix). It is essential that each point
of the arc is counted an even number of times in both directions. The fragment Q may be
considered as a particular example of such a closure for the outward section R′ (figure 2).
One can easily see that in this case no additional term comes, due to the appendage, into
the Fuller formula for writhe and

Wr = 1 + �/2π mod 2, (6)

here � is the spherical area swept out by the tangent indicatrix of the outward curve.
2. The closure γ results in an entire great circle, each fragment of which is passed by

an odd number of times. Figure 4 shows one possible ribbon P that has such a
property. (The ribbon P displayed consists of three fragments: (1) x = π sin 3

2 t, y =
y0 + 1 − cos 3

2 t, t ∈ [
0, 2

3π
)
; (2) x = 2π sin 3

2 t, y = y0 − 2 cos 3
2 t, t ∈ [

2
3π, 4

3π
)
;

(3) x = 3t − 4π, y = y0 − 2 cos2 3
4 t, t ∈ [

4
3π, 2π

]
; z = 0.) Therefore, 2π are to be

added to the area term in the Fuller formula which now involves only the spherical area
� corresponding to the outward curve:

Wr = �/2π mod 2. (7)

For any oriented curve β(τ ), τ ∈ I, I = [0,�] of class C1 (τ is the arclength
parametrization) lying in an oriented Euclidean plane E, the turning number T nβ may be
defined as

T nβ = 1

2π

∫ �

0
κβ(τ ) dτ
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where κβ(τ ) is the signed curvature of β. The turning number tells how many times the
tangent turns around, as the curve is passed over.

If the tangents at the ends of the curve have the same directions (i.e. if β′(0) = β′(�)),
then the turning number is integral. It is the degree of the map β′(τ ) : I �→ S1. In particular,
this is the case for a closed curve [2].

Two curves β0(τ ) and β1(τ ) in the plane E with β′
0(0) = β′

1(0),β′
0(�) = β′

1(�) of class
C1 are said to be homotopic if there exists a homotopy F ∈ C0([0, 1] × I �→ E) such that
F0 = β0, F1 = β1, F

′
θ (0) = β′

0(0), F ′
θ (�) = β′

0(�) and Fθ : τ �→ F(θ, τ ) is a C1 immersion
for all θ ∈ [0, 1].

Two homotopic curves have the same turning number. For closed curves this follows
from the invariance of the degree under homotopy [2]. To show this for non-closed curves,
consider a pair of homotopic curves c1 and c2 connecting the points A1 and A2 with B1 and
B2, respectively, and sharing the same initial and terminal tangents T 0 and T 1. Then there
exists the plane closing homotopic curves d1 and d2 of class C1 so that (1) they connect
the points B1 and B2 with A1 and A2, respectively, (2) they have the initial tangent T 1 and
terminal T 0, (3) they have the same turning number T nd (for certainty, let 0 � T nd < 1, then
T nd equals an angle through which the vector T 1 has to be rotated in the positive direction
to make it coincide with T 0). Due to the additivity property of the turning number integral,
T nc1∪d1 = T nc1 + T nd and T nc2∪d2 = T nc2 + T nd . But the closed curves c1 ∪d1 and c2 ∪d2

are homotopic, hence T nc1∪d1 = T nc2∪d2, which means that T nc1 = T nc2.
In other words, one can deform a curve by moving its ends in the plane and keeping

tangential directions at the ends but not allowing for cusps. The turning number remains
unchangeable then.

Coming back to the closing curve γ, it is easy to see now that both (6) and (7) may be
considered as particular cases of the general relation

Wr = 1 + �/2π + T nγ mod 2 (8)

where T nγ is the turning number of γ.
Hannay suggested relating the linking number of the closed ribbon to the number n which

is 0 if the path corresponding to orientations of the outward ribbon is contractible in the SO(3)
space and n = 1 otherwise.

In what follows the path in SO(3) corresponding to a ribbon V will be denoted by Ṽ .
Note that the closure P treated as a sequence of orientations, also makes a closed path in

SO(3). Let nP be the contractibility number of P̃ . Then

nP = T nγ mod 2. (9)

Now examine what the linking number of the ribbon R ∪ P would be. To this purpose,
formulate

Proposition 1. The linking number of a closed ribbon U is

LkU = nU + 1 mod 2 (10)

where nU is the contractibility number of Ũ .

Firstly, note that (10) remains invariant under the homotopic deformations of U even if
the ribbon may pass through itself that causes the value of the linking to jump by 2 only. The
contractibility number cannot change under such deformations.

Secondly, consider a deformation of U transforming it into a closed ribbon A ∪ B based
on a plane closed non-self-intersecting curve a ∪ b, respectively, where a is a straight-line
fragment and T nb = 1. By the construction, part A may be twisted but not B. The last
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immediately implies nB = 1. If the twist of A is zero, then LkU mod 2 = LkA∪B = 0 and
nU = nA∪B = nB = T nb = 1 because Ã is simply a point.

Generally, path Ã has the contractibility number nA = T wA mod 2, where T wA is the
twist of A. It is easy to check that nA∪B = nA + nB mod 2. Then nU = T wA + 1 mod 2 and,
on the other hand, the Călugăeanu–White–Fuller formula implies LkU = T wA mod 2 that
proves (10).

Corollary 2. Let U be a closed ribbon so that two (different) points exist on it where its
orientation is the same. (By orientation of the ribbon in a particular point, the directions both
of the tangent to the basic curve and of the generating vector are meant.) Let U1 and U2 be
the corresponding fragments of U so that U = U1 ∪ U2. Then path Ũ has a self-intersection
point (i.e. Ũ 1 and Ũ 2 each closed) and

LkU = n1 + n2 + 1 mod 2 (11)

where n1 and n2 are the contractibility numbers of Ũ 1 and Ũ 2, respectively.
The contractibilty number of Ũ is n = n1 + n2 mod 2 because the fundamental group

π1(SO(3)) = Z2. Then (11) follows from proposition 1.

Turning back to the ribbon R ∪ P , it is easy to see that it satisfies the conditions of
corollary 2 with U1 = R and U2 = P . Then, by (11)

LkR∪P = n + nP + 1 mod 2. (12)

Note that the last expression differs from that in [1] by the term nP +1. The path corresponding
to P is contractible in SO(3) for the first of the two possible types of the closure that were
considered in the beginning of this section and it is not contractible in the second case.

Applying now the Călugăeanu–White–Fuller theorem to R ∪ P and making use of (8),
(9) and (12) yield

n + T nγ + 1 = 1 + �/2π + T nγ + T w mod 2

which, after cancelling T nγ + 1, is exactly Hannay’s result.

4. Concluding remarks

Summing up, it is clear now that the shape of the closing ribbon affects the value of the writhe
as well as the relationship between the linking number and the contractibility property, but
the final equation remains unchanged because of the mutual compensation of the intermediate
variations.

It is likely that the final result could be achieved by the careful consideration of the
closure proposed by Hannay, but the above construction seems to make the whole proof more
transparent. To compute the writhe for the closure with jumping tangents, one may apply the
result that is formulated (but not proved) as conjecture 16 in [10].

Note also that the computation of the linking number of the closed ribbon may be done by
pulling out the outward ribbon straight and by counting the number of twists in this fragment
as was proposed in [1]. However, it seems that this approach is too intricate because of the
necessity to account properly for the limiting shape of the closing section which could pass
through itself or the outward section.

In some sense, the Hannay equation may be considered as an adaptation of the Fuller
theorem (3) to a non-closed ribbon of a particular type. Equation (3) is based on the Gauss–
Bonnet theorem, but, in distinction to the last, the Fuller formula, when applied to a non-smooth
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closed ribbon, includes no extra terms due to the non-continuity of the tangent or the principal
normal. These non-area terms are taken up by the twist component.

Another view of the Hannay equation is to treat it as a refined Gauss–Bonnet theorem
applied to an open ribbon with the closed tangent indicatrix. It is interesting to note that
the Fuller formula stems from the classical Gauss–Bonnet, while, in a converse manner, the
‘generalized Gauss–Bonnet’ (i.e. the Hannay equation) follows from the Fuller theorem.

John Hannay authorizes me to declare here that he fully agrees that the principal one of
his two proofs contains faulty reasoning, and the correction, in particular proposition 1, which
he just missed, neatly clinches the proof.
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